Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(13)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37445831

RESUMEN

Cisplatin (cis-diamminedichloroplatinum I) is a platinum-based drug, the mainstay of anticancer treatment for numerous solid tumors. Since its approval by the FDA in 1978, the drug has continued to be used for the treatment of half of epithelial cancers. However, resistance to cisplatin represents a major obstacle during anticancer therapy. Here, we review recent findings on how the mTORC1 pathway and autophagy can influence cisplatin sensitivity and resistance and how these data can be applicable for the development of new therapeutic strategies.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Cisplatino/farmacología , Cisplatino/uso terapéutico , Platino (Metal)/farmacología , Diana Mecanicista del Complejo 1 de la Rapamicina , Resistencia a Antineoplásicos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Autofagia
2.
Biomolecules ; 12(7)2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35883457

RESUMEN

Since the Nobel Prize award more than twenty years ago for discovering the core apoptotic pathway in C. elegans, apoptosis and various other forms of regulated cell death have been thoroughly characterized by researchers around the world. Although many aspects of regulated cell death still remain to be elucidated in specific cell subtypes and disease conditions, many predicted that research into cell death was inexorably reaching a plateau. However, this was not the case since the last decade saw a multitude of cell death modalities being described, while harnessing their therapeutic potential reached clinical use in certain cases. In line with keeping research into cell death alive, francophone researchers from several institutions in France and Belgium established the French Cell Death Research Network (FCDRN). The research conducted by FCDRN is at the leading edge of emerging topics such as non-apoptotic functions of apoptotic effectors, paracrine effects of cell death, novel canonical and non-canonical mechanisms to induce apoptosis in cell death-resistant cancer cells or regulated forms of necrosis and the associated immunogenic response. Collectively, these various lines of research all emerged from the study of apoptosis and in the next few years will increase the mechanistic knowledge into regulated cell death and how to harness it for therapy.


Asunto(s)
Caenorhabditis elegans , Neoplasias , Animales , Apoptosis , Muerte Celular , Humanos , Necrosis
3.
Cells ; 11(3)2022 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-35159285

RESUMEN

Improvement of anticancer treatments is associated with increased survival of cancer patients at risk of cardiac disease. Therefore, there is an urgent need for new therapeutic molecules capable of preventing acute and long-term cardiotoxicity. Here, using commercial and home-made chemolibraries, we performed a robust phenotypic high-throughput screening in rat cardiomyoblast cell line H9c2, searching for small molecules capable of inhibiting cell death. A screen of 1600 compounds identified six molecules effective in preventing necrosis and apoptosis induced by H2O2 and camptothecin in H9c2 cells and in rat neonatal ventricular myocytes. In cells treated with these molecules, we systematically evaluated the expression of BCL-2 family members, autophagy progression, mitochondrial network structure, regulation of mitochondrial fusion/fission, reactive oxygen species, and ATP production. We found that these compounds affect autophagy induction to prevent cardiac cell death and can be promising cardioprotective drugs during chemotherapy.


Asunto(s)
Peróxido de Hidrógeno , Miocitos Cardíacos , Animales , Apoptosis , Autofagia , Humanos , Peróxido de Hidrógeno/farmacología , Miocitos Cardíacos/metabolismo , Necrosis/metabolismo , Ratas
4.
Cells ; 10(10)2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34685669

RESUMEN

The SEA complex was described for the first time in yeast Saccharomyces cerevisiae ten years ago, and its human homologue GATOR complex two years later. During the past decade, many advances on the SEA/GATOR biology in different organisms have been made that allowed its role as an essential upstream regulator of the mTORC1 pathway to be defined. In this review, we describe these advances in relation to the identification of multiple functions of the SEA/GATOR complex in nutrient response and beyond and highlight the consequence of GATOR mutations in cancer and neurodegenerative diseases.


Asunto(s)
Complejos Multiproteicos/metabolismo , Animales , Enfermedad , Humanos , Complejos Multiproteicos/química , Nutrientes , Fenotipo , Transducción de Señal , Terminología como Asunto
5.
Int J Mol Sci ; 22(4)2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33557396

RESUMEN

HIV-1 infects T cells, but the most frequent AIDS-related lymphomas are of B-cell origin. Molecular mechanisms of HIV-1-induced oncogenic transformation of B cells remain largely unknown. HIV-1 Tat protein may participate in this process by penetrating and regulating gene expression in B cells. Both immune and cancer cells can reprogram communications between extracellular signals and intracellular signaling pathways via the Akt/mTORC1 pathway, which plays a key role in the cellular response to various stimuli including viral infection. Here, we investigated the role of HIV-1 Tat on the modulation of the Akt/mTORC1 pathway in B cells. We found that HIV-1 Tat activated the Akt/mTORC1 signaling pathway; this leads to aberrant activation of activation-induced cytidine deaminase (AICDA) due to inhibition of the AICDA transcriptional repressors c-Myb and E2F8. These perturbations may ultimately lead to an increased genomic instability and proliferation that might cause B cell malignancies.


Asunto(s)
Linfocitos B/patología , Citidina Desaminasa/metabolismo , Daño del ADN , Regulación de la Expresión Génica , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , Linfocitos B/inmunología , Linfocitos B/metabolismo , Células Cultivadas , Citidina Desaminasa/genética , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-myb/genética , Proteínas Proto-Oncogénicas c-myb/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Activación Transcripcional , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética
6.
Cancers (Basel) ; 12(6)2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32517128

RESUMEN

Epstein Barr Virus (EBV) is one of the most common human herpesviruses. After primary infection, it can persist in the host throughout their lifetime in a latent form, from which it can reactivate following specific stimuli. EBV reactivation is triggered by transcriptional transactivator proteins ZEBRA (also known as Z, EB-1, Zta or BZLF1) and RTA (also known as BRLF1). Here we discuss the structural and functional features of ZEBRA, its role in oncogenesis and its possible implication as a prognostic or diagnostic marker. Modulation of host gene expression by ZEBRA can deregulate the immune surveillance, allow the immune escape, and favor tumor progression. It also interacts with host proteins, thereby modifying their functions. ZEBRA is released into the bloodstream by infected cells and can potentially penetrate any cell through its cell-penetrating domain; therefore, it can also change the fate of non-infected cells. The features of ZEBRA described in this review outline its importance in EBV-related malignancies.

7.
Cells ; 9(5)2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32354054

RESUMEN

Mammalian target of rapamycin complex 1 (mTORC1) is a master regulator of cellular proliferation and survival which controls cellular response to different stresses, including viral infection. HIV-1 interferes with the mTORC1 pathway at every stage of infection. At the same time, the host cells rely on the mTORC1 pathway and autophagy to fight against virus replication and transmission. In this review, we will provide the most up-to-date picture of the role of the mTORC1 pathway in the HIV-1 life cycle, latency and HIV-related diseases. We will also provide an overview of recent trends in the targeting of the mTORC1 pathway as a promising strategy for HIV-1 eradication.


Asunto(s)
VIH-1/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Autofagia/fisiología , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , Interacciones Huésped-Patógeno , Humanos , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Replicación Viral/fisiología
8.
Trends Cell Biol ; 29(8): 647-659, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31176528

RESUMEN

The nucleolus is the largest and most studied nuclear body, but its role in nuclear function is far from being comprehensively understood. Much work on the nucleolus has focused on its role in regulating RNA polymerase I (RNA Pol I) transcription and ribosome biogenesis; however, emerging evidence points to the nucleolus as an organizing hub for many nuclear functions, accomplished via the shuttling of proteins and nucleic acids between the nucleolus and nucleoplasm. Here, we discuss the cellular mechanisms affected by shuttling of nucleolar components, including the 3D organization of the genome, stress response, DNA repair and recombination, transcription regulation, telomere maintenance, and other essential cellular functions.


Asunto(s)
Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Nucléolo Celular/genética , Núcleo Celular/genética , Reparación del ADN , Humanos , ARN Polimerasa I/genética , ARN Polimerasa I/metabolismo , Telómero/genética , Telómero/metabolismo
9.
Cell Mol Life Sci ; 76(8): 1623-1640, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30673821

RESUMEN

The major signaling pathway that regulates cell growth and metabolism is under the control of the target of rapamycin complex 1 (TORC1). In Saccharomyces cerevisiae the SEA complex is one of the TORC1 upstream regulators involved in amino acid sensing and autophagy. Here, we performed analysis of the expression, interactions and localization of SEA complex proteins under different conditions, varying parameters such as sugar source, nitrogen availability and growth phase. Our results show that the SEA complex promotes mitochondria degradation either by mitophagy or by general autophagy. In addition, the SEACIT subcomplex is involved in the maintenance of the vacuole-mitochondria contact sites. Thus, the SEA complex appears to be an important link between the TORC1 pathway and regulation of mitochondria quality control.


Asunto(s)
Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Mitofagia/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Vacuolas/metabolismo , Autofagia/fisiología , Eliminación de Gen , Glucosa/metabolismo , Proteínas de la Membrana/genética , Nitrógeno/metabolismo , Oxígeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética
10.
Biochim Biophys Acta Mol Cell Res ; 1865(9): 1293-1311, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29936127

RESUMEN

Living organisms have evolved various mechanisms to control their metabolism and response to various stresses, allowing them to survive and grow in different environments. In eukaryotes, the highly conserved mechanistic target of rapamycin (mTOR) signaling pathway integrates both intracellular and extracellular signals and serves as a central regulator of cellular metabolism, proliferation and survival. A growing body of evidence indicates that mTOR signaling is closely related to another cellular protection mechanism, the DNA damage response (DDR). Many factors important for the DDR are also involved in the mTOR pathway. In this review, we discuss how these two pathways communicate to ensure an efficient protection of the cell against metabolic and genotoxic stresses. We also describe how anticancer therapies benefit from simultaneous targeting of the DDR and mTOR pathways.


Asunto(s)
Daño del ADN , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Neoplasias/metabolismo , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Daño del ADN/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Transducción de Señal/efectos de los fármacos
11.
Oncotarget ; 9(27): 18712-18719, 2018 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-29721155

RESUMEN

Gallotannin (or tannic acid) is a naturally occurring compound that inhibits cell growth and activity of different DNA-polymerases, including telomerase. The purpose of the present study was to gain insight into the mechanism of telomerase inhibition by gallotannin. We determined that gallotannin inhibits telomerase in vitro with an half maximal inhibitory concentrations value of 130 nM, but it does not affect telomerase complex assembly and component levels in vivo. The inhibitory activity of gallotannin against telomerase provides an additional explanation for the anti-cancer activities of this compound.

12.
Sci Rep ; 7(1): 15311, 2017 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-29127423

RESUMEN

The SEA/GATOR complex is an essential regulator of the mTORC1 pathway. In mammals the GATOR1 complex is composed of the proteins DEPDC5, NPRL2 and NPRL3. GATOR1 serves as an mTORC1 inhibitor and activates the mTORC1-modulating RagA GTPase. However, several GATOR members have mTORC1 independent functions. Here we characterize mammalian cells overexpressing the GATOR1 component NPRL2. We demonstrate that, in the cells with active p53, ectopic expression of NPRL2 induces NOX2-dependent production of reactive oxygen species and DNA damage. Overexpressed NPRL2 accumulates in the nucleus, together with apoptosis-inducing factor (AIF). These events are accompanied by phosphorylation of p53, activation of a DNA-damage response and cell cycle arrest in G1 phase, followed by apoptosis. In the cells negative for active p53, NPRL2 ectopic expression leads to activation of CHK1 or CHK2 kinases and cell cycle arrest in S or G2/M phases. Combined, these results demonstrate a new role for the NPRL2, distinct from its function in mTORC1 regulation.


Asunto(s)
Puntos de Control del Ciclo Celular , Núcleo Celular/metabolismo , Daño del ADN , Especies Reactivas de Oxígeno/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Núcleo Celular/genética , Células HEK293 , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , NADPH Oxidasa 2/genética , NADPH Oxidasa 2/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética
13.
Cell Mol Life Sci ; 74(19): 3439-3449, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28444416

RESUMEN

Skeletal muscle is a highly oxygen-consuming tissue that ensures body support and movement, as well as nutrient and temperature regulation. DNA damage induced by reactive oxygen species is present in muscles and tends to accumulate with age. Here, we present a summary of data obtained on DNA damage and its implication in muscle homeostasis, myogenic differentiation and neuromuscular disorders. Controlled and transient DNA damage appears to be essential for muscular homeostasis and differentiation while uncontrolled and chronic DNA damage negatively affects muscle health.


Asunto(s)
Daño del ADN , Músculo Esquelético/patología , Músculo Esquelético/fisiología , Enfermedades Neuromusculares/genética , Estrés Oxidativo , Envejecimiento , Animales , Antioxidantes/uso terapéutico , ADN/genética , Daño del ADN/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Humanos , Desarrollo de Músculos/efectos de los fármacos , Músculo Esquelético/metabolismo , Enfermedades Neuromusculares/tratamiento farmacológico , Enfermedades Neuromusculares/patología , Estrés Oxidativo/efectos de los fármacos
14.
Open Biol ; 5(12): 150174, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26631379

RESUMEN

The folliculin/Fnip complex has been demonstrated to play a crucial role in the mechanisms underlying Birt-Hogg-Dubé (BHD) syndrome, a rare inherited cancer syndrome. Lst4 has been previously proposed to be the Fnip1/2 orthologue in yeast and therefore a member of the DENN family. In order to confirm this, we solved the crystal structure of the N-terminal region of Lst4 from Kluyveromyces lactis and show it contains a longin domain, the first domain of the full DENN module. Furthermore, we demonstrate that Lst4 through its DENN domain interacts with Lst7, the yeast folliculin orthologue. Like its human counterpart, the Lst7/Lst4 complex relocates to the vacuolar membrane in response to nutrient starvation, most notably in carbon starvation. Finally, we express and purify the recombinant Lst7/Lst4 complex and show that it exists as a 1 : 1 heterodimer in solution. This work confirms the membership of Lst4 and the Fnip proteins in the DENN family, and provides a basis for using the Lst7/Lst4 complex to understand the molecular function of folliculin and its role in the pathogenesis of BHD syndrome.


Asunto(s)
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Kluyveromyces/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo
15.
J Cell Sci ; 128(12): 2219-28, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25934700

RESUMEN

Cells constantly adapt to various environmental changes and stresses. The way in which nutrient and stress levels in a cell feed back to control metabolism and growth are, unsurprisingly, extremely complex, as responding with great sensitivity and speed to the 'feast or famine, slack or stress' status of its environment is a central goal for any organism. The highly conserved target of rapamycin complex 1 (TORC1) controls eukaryotic cell growth and response to a variety of signals, including nutrients, hormones and stresses, and plays the key role in the regulation of autophagy. A lot of attention has been paid recently to the factors in this pathway functioning upstream of TORC1. In this Commentary, we focus on a major, newly discovered upstream regulator of TORC1--the multiprotein SEA complex, also known as GATOR. We describe the structural and functional features of the yeast complex and its mammalian homolog, and their involvement in the regulation of the TORC1 pathway and TORC1-independent processes. We will also provide an overview of the consequences of GATOR deregulation in cancer and other diseases.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico , Factores de Transcripción/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Factores de Transcripción/genética
16.
Mol Cell Proteomics ; 13(11): 2855-70, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25073740

RESUMEN

The TORC1 signaling pathway plays a major role in the control of cell growth and response to stress. Here we demonstrate that the SEA complex physically interacts with TORC1 and is an important regulator of its activity. During nitrogen starvation, deletions of SEA complex components lead to Tor1 kinase delocalization, defects in autophagy, and vacuolar fragmentation. TORC1 inactivation, via nitrogen deprivation or rapamycin treatment, changes cellular levels of SEA complex members. We used affinity purification and chemical cross-linking to generate the data for an integrative structure modeling approach, which produced a well-defined molecular architecture of the SEA complex and showed that the SEA complex comprises two regions that are structurally and functionally distinct. The SEA complex emerges as a platform that can coordinate both structural and enzymatic activities necessary for the effective functioning of the TORC1 pathway.


Asunto(s)
Autofagia/fisiología , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Regulación Fúngica de la Expresión Génica , Mitocondrias/metabolismo , Nitrógeno/metabolismo , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/ultraestructura , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transducción de Señal
17.
Autophagy ; 7(11): 1392-3, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21804352

RESUMEN

We now seem to live in a small world, in which everyone is highly interconnected. Cells, too, often also display tremendous interconnectivities in their component systems. As a recent case in point, we have identified a conserved protein complex--the SEA complex--that links the nuclear pore complex (NPC), the COPII vesicle coating complex, vacuoles and autophagy. In this punctum we will discuss the properties of this novel complex.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Complejos Multiproteicos/metabolismo , Nitrógeno/deficiencia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/efectos de los fármacos , Complejos Multiproteicos/química , Nitrógeno/farmacología , Poro Nuclear/efectos de los fármacos , Poro Nuclear/metabolismo , Unión Proteica/efectos de los fármacos , Estructura Secundaria de Proteína , Saccharomyces cerevisiae/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/química , Vacuolas/efectos de los fármacos
18.
Mol Cell Proteomics ; 10(6): M110.006478, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21454883

RESUMEN

The presence of multiple membrane-bound intracellular compartments is a major feature of eukaryotic cells. Many of the proteins required for formation and maintenance of these compartments share an evolutionary history. Here, we identify the SEA (Seh1-associated) protein complex in yeast that contains the nucleoporin Seh1 and Sec13, the latter subunit of both the nuclear pore complex and the COPII coating complex. The SEA complex also contains Npr2 and Npr3 proteins (upstream regulators of TORC1 kinase) and four previously uncharacterized proteins (Sea1-Sea4). Combined computational and biochemical approaches indicate that the SEA complex proteins possess structural characteristics similar to the membrane coating complexes COPI, COPII, the nuclear pore complex, and, in particular, the related Vps class C vesicle tethering complexes HOPS and CORVET. The SEA complex dynamically associates with the vacuole in vivo. Genetic assays indicate a role for the SEA complex in intracellular trafficking, amino acid biogenesis, and response to nitrogen starvation. These data demonstrate that the SEA complex is an additional member of a family of membrane coating and vesicle tethering assemblies, extending the repertoire of protocoatomer-related complexes.


Asunto(s)
Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Autofagia , Inmunoprecipitación , Membranas Intracelulares/metabolismo , Modelos Moleculares , Complejos Multiproteicos/metabolismo , Proteínas de Complejo Poro Nuclear/química , Fenotipo , Filogenia , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/química , Homología Estructural de Proteína , Fracciones Subcelulares/metabolismo
19.
EMBO Rep ; 11(7): 548-54, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20508643

RESUMEN

Ubiquitin-dependent processes can be antagonized by substrate-specific deubiquitination enzymes involved in many cellular functions. In this study, we show that the yeast Ubp3-Bre5 deubiquitination complex interacts with both the chaperone-like Cdc48, a major actor of the ubiquitin and proteasome system, and Ufd3, a ubiquitin-binding cofactor of Cdc48. We observed that these partners are required for the Ubp3-Bre5-dependent and starvation-induced selective degradation of yeast mature ribosomes, also called ribophagy. By contrast, proteasome-dependent degradation does not participate in this process. Our data favour the idea that these factors cooperate to recognize and deubiquitinate specific substrates of ribophagy before their vacuolar degradation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Endopeptidasas/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Adenosina Trifosfatasas/genética , Proteínas de Ciclo Celular/genética , Endopeptidasas/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina/metabolismo , Proteína que Contiene Valosina
20.
Nature ; 450(7170): 683-94, 2007 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-18046405

RESUMEN

To understand the workings of a living cell, we need to know the architectures of its macromolecular assemblies. Here we show how proteomic data can be used to determine such structures. The process involves the collection of sufficient and diverse high-quality data, translation of these data into spatial restraints, and an optimization that uses the restraints to generate an ensemble of structures consistent with the data. Analysis of the ensemble produces a detailed architectural map of the assembly. We developed our approach on a challenging model system, the nuclear pore complex (NPC). The NPC acts as a dynamic barrier, controlling access to and from the nucleus, and in yeast is a 50 MDa assembly of 456 proteins. The resulting structure, presented in an accompanying paper, reveals the configuration of the proteins in the NPC, providing insights into its evolution and architectural principles. The present approach should be applicable to many other macromolecular assemblies.


Asunto(s)
Proteínas de Complejo Poro Nuclear/química , Proteínas de Complejo Poro Nuclear/metabolismo , Poro Nuclear/química , Poro Nuclear/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/ultraestructura , Supervivencia Celular , Biología Computacional , Sustancias Macromoleculares/análisis , Sustancias Macromoleculares/química , Sustancias Macromoleculares/metabolismo , Microscopía Inmunoelectrónica , Modelos Biológicos , Poro Nuclear/ultraestructura , Proteínas de Complejo Poro Nuclear/análisis , Proteínas de Complejo Poro Nuclear/ultraestructura , Unión Proteica , Proteómica , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/análisis , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura , Sensibilidad y Especificidad , Incertidumbre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA